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Notes

Lab 2 is due next Friday.
Think about the project, discuss with me during office hours or after class.
No quiz today.
Midterm
o Oct 29, in class.
o Will cover materials up to lecture 8 (Oct 22)
o Will send out a coverage by this weekend
e Final presentation
o Virtual
o Dec 16 and Dec 17
o Final report due at Dec 19
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Recap

Distillation

Neural architecture search (NAS)
Low-rank factorization

Dynamic / Conditional Computing
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Topics

Large Model Data Distribution
Large Model Quantization

Large Model Pruning

Low-rank Decomposition for LLM
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Quantization

e Quantization on activation needs to be performed dynamically. This will introduce
additional compute overhead.

e Also the activation will pass the nonlinear functions, which are usually very sensitive to
quantization error, so dequantization is required to convert back to FP 16/32.

e Forlarge models with substantial computational demand, even when input activations

are dynamically quantized, this approach can still significantly reduce overall
processing latency.
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Quantization

e Quantization on activation needs to be performed dynamically. This will introduce
additional compute overhead.

e Also the activation will pass the nonlinear functions, which are usually very sensitive to
quantization error, so dequantization is required to convert back to FP 16/32.

e Forlarge models with substantial computational demand, even when input activations

are dynamically quantized, this approach can still significantly reduce overall
processing latency.
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Granularity of Quantization

e The activation and weight can be quantized with different granularity:
o Tensor-based quantization
o Vector-based quantization
o  Group-based quantization
e A higher quantization granularity will lead to a lower quantization error and a

higher hardware implementation cost.

1
X X X
Tensor-based Vector-based Group-based
quantization quantization quantization
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Types of Outlier

e Massive Activation:
o For an activation matrix A, an massive activation is an element Aij within it
that satisfies:
o Aij>nXmean(|A|) y6-Layer3
o Aij>y
o For example, n=300, y=50
e Channelwise Outlier:
o mean(Ai) > nXstd(A) +mean(|A|)
o std(Ai)<p
o For example, n=3, =0.6
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Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference
on machine learning. PmLR, 2021.
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Outlier Study: CLIP Activations

® Outliers with large magnitudes X X2 X3 X4
appear at positions x1, y1, and
y5, referred to as massive
activations.
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Outlier Study: CLIP Activations

Layer 1 Layer 2 Layer 3 Layer 4

e 3D plots of x2 across
layers.
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Outlier Study: CLIP Weights

g-weight Layerl

e Wjgq across CLIP layers.
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Outlier Study: CLIP Weights

e Wk across CLIP layers.
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Outlier Study: CLIP Weights
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Outlier Study: CLIP Weights

Layer 0 Weights

Attention Q Attention K Attention V

Attention O
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Outlier Study: LLaMA Activations

NYU SAI LAB

LLaMA2-13B

Sun, Mingjie, et al. "Massiveﬁacr;tivations in large language models." arXiv preprint arXiv:2402.17762 (2024).
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Why Massive Activations Exist?

e These massive activations are not random spikes or errors, but rather learned, input-agnostic
constants that function as implicit bias terms within the model.
e The paper argues that LLMs use massive activations to inject bias into the self-attention

computation. These large, fixed activations essentially allow certain tokens to always attract
disproportionately high attention.

e No clear conclusion has been reached.
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NYU SAI LAB Sun, Mingjie, et al. "Massive activations in large language models." arXiv preprint arXiv:2402.17762 (2024). 18




Impact of Massive Activation

LLaMA3.2-3B LLaMA3.1-8B LLaMA2-13B GPT-2 Qwen2.5-7B
Intervention WikiText C4 | WikiText C4 | WikiText C4 | WikiText C4 | WikiText c4
Original 5.567 10.790 6.941 9.046 4.355 6.405 14.795 19.460 6.520 11.773
TMAs to mean aty; 112411175 21046.82 | 21281.49  1301562.25| 130156225 6469.42 | 14.841 19.560 | 71216.17  66588.86
TMAs to zeroes at y;  1138151.23 21951.41 | 21601.10  1302018.53| 1309211.61 712832 | 14911 19.928 | 71835.61  67518.35

e The truncation of massive activation will cause the significant accuracy degradation
of the LLM.

e Massive activations also occur in other types of foundation models that utilize
attention-based architectures.

NYU SAI LAB

Raman, Rahul, Khushi Sharma, and Sai Qian Zhang. "Rethinking the Outlier Distribution in Large Language Models: An
In-depth Study." arXiv preprint arXiv:2505.21670 (2025).
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Detailed Study of Massive Activation

y7 of layer 3 first produce massive activation (MA), the outlier exists within the first text token.

[ ]
e X1 and y1 in the following layers contain MA, which may reach into the thousands.
e The MAthen propagates through residual link across layers.
e Channel wise outliers exists within x2, y2.
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Detailed Study of Massive Activation

e Top magnitude of x1 across layers.
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Detailed Study of Massive Activation

e Top magnitude of y7 across layers.
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e Truncating the massive activation that caused by residual connection will not

lead to large accuracy drop.
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How Channelwise Outlier Forms?

o X1 already has some channelwise outlier, but not significant enough.
o Partial channelwise outlier forms after standardization.

e The scaling process greatly contributes to part of the channelwise outliers.

Step 1
_ Mo,&0
M1,61
L X
ML-1,60-1
X! = M

NYU SAI LAB
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Step 2
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Standardization

X4

Scaling + bias
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How Channelwise Outlier Forms?

Step 1
E
Mo, 50 Standardization
M1,61
L
X X %
ML-1,6L-1

Xr_ r
x' =27 " ForeachrelL
or

e When the standard deviation is low, channel-wise outliers become more pronounced.
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x1-Layerl2 norm_-Layerl2

How Channelwise Outlier Forms?
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e X1 typically already contains some channelwise outliers.
e Following standardization, the outlier's magnitude
becomes more pronounced.
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How Channelwise Outlier Forms?

Profiling on CLIP
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e The scaling and bias factors within the normalization layer also contribute to the
channelwise outlier.

NYU SAI LAB
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How Channelwise Outlier Forms?

x1-Layer0
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e The scaling and bias factors within the
normalization layer also contribute to the

channelwise outlier.

NYU SAl LAB

a0

Actvation Magnitude

Activation Magnitude

norm_only-Layer0

Activation Magnitude

Actvation Magnitude

x2-Layer0

20 Z
Chapyy, 130
i) a0

50

Xx2-Layer6

o
a0

28



How Channelwise OQutlier Forms?

Attention O
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e The question then arises: why does x1 already exhibit some channelwise

outliers?
e This is attributed to Wout, which results in y5 having some minor channelwise

outliers.
e Additionally, the residual link carries intermediate activations with channelwise

outliers, which are also generated by the Wout from preceding layers.
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Quantization Strategy for LMs

@ Outlier |
Smoothing

LLM E>k w» @

Intermediate
LLM

7

® Post-training |
Quantization
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Output
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e \When performing post-training quantization on a LLM, it's common to include a
step of outlier smoothing prior to the quantization process.

NYU SAI LAB
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Topics

Large Model Data Distribution
Large Model Quantization

Large Model Pruning

Low-rank Decomposition for LLM
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Topics

e Large Model Data Distribution
e [arge Model Quantization
o Smoothing Techniques
o Quantization Techniques
e Large Model Pruning
e Low-rank Decomposition for LLM

NYU SAI LAB

32



SmoothQuant

ith column
\ ith row
—~
y )
Y = Q(X)Q(W) Y = Q(X')Q(W’)
Large quantization error Low quantization error

NYU SAI LAB Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models."

International Conference on Machine Learning. PMLR, 2023.
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SmoothQuant

outlier IX| W] e The intermediate results within LLM usually

-
=

3 ] = = have a lot of outliers.
o ow effective bits
E SN o .
5, : . ' e SmoothQuant smooths the activation outliers
RATS: 10/ a0z on . "';‘ o A by offline migrating the quantization difficulty
li?:r'ltflil:iiulw from activations to weights with a
s [’ T W] mathematically equivalent transformation.

easy to quantize easy to quantize

(b) SmoothQuant

NYU SAI LAB Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." 34
International Conference on Machine Learning. PMLR, 2023.




SmoothQuant

outlier IX|

|W]
= 10 0.1 R @ ‘Nr 11—«
.:5 low effective bits SJ o maX( |X] |) / maX(| 3 |)
5\
= hard to quantize : very easy to quantize ° ais a hyperparameter.
(a) Original
simoothed le migrate difficulty |W |
é ] \/\/\N\/W l\/\/\/\/\/\/\/ b (Xdiag(S)_l) | (diag(S)W) —AW
g‘ 0 0 . . . .
Ry oiquaniize easy to quantize e 0 is determined from the calibration
(b) SmoothQuant dataset.

NYU SAI LAB Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models."

35
International Conference on Machine Learning. PMLR, 2023.



Activation-Aware Weight Quantization (AWQ)

: Llama-2 LLaMA
s* = argmin £L(s) PPL|
» 7B 138 70B 7B 138 30B  65B
: ; FPI6 - 547 488 332 568 509 410 353
= ||Q(W - di iag(s)™' - X) - WX
L(s) = [|Q( diag(s))(diag(s) ) — WX| RTN 666 552 398 701 588 488 424
INT3  GPTQ 643 548 388 881 566 488 417
gl28  GPTQR 642 541 386 653 564 474 421
AWQ 624 532 374 635 552 461 395
e AWQ improves the performance of RTN 573 498 346 596 525 423 367
L agn INTA  GPTQ 569 498 342 622 523 424 366
smoothquant by making “s” learnable. gl28  GPTQR 563 499 343 58 520 422 366
AWQ 560 497 341 578 519 421 3.62

NYU SAI LAB Lin, Ji, et al. "AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration." Proceedings

of Machine Learning and Systems 6 (2024): 87-100. 3




Channe/ 2048 O

e QuaRot introduces a novel methods to convert the weights and activation of LLM.
e After conversion, most of the outliers within the activation and weights are removed.
e This conversion introduces almost no additional cost during the inference.

NYU SAIl LAB| Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated lims." arXiv preprint arXiv:2404.00456 (2024).
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QuaRot

e Assume Y =AW, where A may have outliers, quantizing Aand W as Q(A) and

Q(W) could result in increased quantization error. Consequently, Q(A)Q(W) may
differ significantly from AW.

e With QuaRot, a orthogonal matrix is applied to eliminate the outliers within A.

A— W —AW AR— R™W — AW

R'R=RR'=|

Q(A) —Q(W) — Q(A)Q(W) Q(AR) — Q(R™W) — Q(AR)Q(R™W)

e R™W can be computed offline, AR can be generated by modifying the weight
matrices of the last layer.

NYU SAI LAB Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024). 38




QuaRot

Layer |

Layer I+1

A— Wi Al+1

Wi+1

- Ar1\Wi+1

Layer |

A—

WIR

Layer [+1

—— AR —

RTWi+1

- Al+1WI+1

e RT™W can be computed offline, AR can be generated by modifying the weight

matrices of the last layer.

NYU SAI LAB

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024). 39



QuaRot

Layer | Layer |
2 2
A— Wi {2 LNAW) A—| WIR HZ2—LN(AWIR) # LN(AIWI)xR
(@) (@)
3 3

e However, if a nonlinear function follows the linear layers, the Hadamard transform
must be computed dynamically.

NYU SAI LAB Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).
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e [For some of the layers, the conversion needs to be performed online.
e \We can use Hadamard matrix, which consists of only 1 and -1 to facilitate the
matrix multiplications.

NYU SAI LAB

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated lims." arXiv preprint arXiv:2404.00456 (2024).
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PTP=PPT=|

e Permutation matrix is another types of matrix which cause no change on the output.
e Duquant combines three types of computational invariance operation, including the
scalar-based, rotation-based and permutation-based operations for mitigating the outliers.

NYU SAI LAB Lin, Haokun, et al. "Duquant: Distributing outliers via dual transformation makes stronger quantized llms." Advances in w2

Neural Information Processing Systems 37 (2024): 87766-87800.
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NYU SAI LAB Lin, Haokun, et al. "Duquant: Distributing outliers via dual transformation makes stronger quantized llms." Advances in
Neural Information Processing Systems 37 (2024): 87766-87800.




SpinQuant

_____________

(m[o)iz=le p— |

I:I ‘Rl’l[w"] [Rope}{&s ® D 'Rz-l[w]Rl [:I e X

.............. | (R Waaed) | s

____________________

___________________

ks
o rotations

argmin Lo (R, Ry | W, X) e SpinQuant optimizes (or learns) the rotation matrices to
ReM obtain the minimal changes on the training loss.
e We have to ensure the rotational matrix still satisfies the
orthogonal property — Cayley Optimization.

NYU SAI LAB Liu, Zechun, et al. "SpinQuant--LLM quantization with learned rotations." arXiv preprint arXiv:2405.16406 (2024). 44




Topics

e Large Model Data Distribution
e [arge Model Quantization
o Smoothing Techniques
o Quantization Techniques
e Large Model Pruning
e Low-rank Decomposition for LLM

NYU SAI LAB

45



Sequential Update

o
Xc,1 ~>[ Layer 1 ]y—cl[ Layer 2 ]y—ci[ Layer 3 ]y—ci .

NYU SAI LAB

min D Yer — Fy (men)l?
1

mc,leD

We use a calibration dataset and
profile some data xc, yc on the
first layer.

After that, we use these data to
train the optimal quantization
hyperparameters, smoothing
hyperparameters.
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Calibration Dataset

Xc,1 ~>[ Layer 1 ]y—cl[ Layer 2 ]y—ci[ Layer 3 ]y_cg *

min Y | [lye2 — Fy, (ze2)l?
2

Te2 eD

Le2 = Fal’;(xc,l)

NYU SAI LAB

After that, we regenerate the
calibration dataset using the
new weight values in layer 1,
results in (Xc,2, Yc.2).
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AdaQuant

(Awa Aqu V) = (All'l ? Ail’z ) ‘Afl)
¢ —_— R : ), Ve _ x7! . q 2
ngini? IWX —Qa, (W)Qa, (X)||? B AflgAnle%l Wi Xy — Qa,, (W)) - Qa,, (X7

Xg=0(Qa,, ,(Wi_1+Vi_1)-Qa,, (X11)),
AdaQuant Sequential AdaQuant

e A small calibration dataset is used to find the optimal scale and V.

U 8 I L B Hubara, Itay, et al. "Accurate post training quantization with small calibration sets." International Conference on Machine
NY A A Learning. PMLR, 2021.
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Pruning Criteria: Training Loss Change

NYU SAI LAB

LeCun, Yann, John Denker, and Sara Solla. "Optimal brain damage." Advances in neural information processing systems

2 (1989).

L(w') = L(w) + VL(w)! (w— w)
+%(w —w')IViL(w)(w — w')

When reflecting on each individual value,
the pruning criteria becomes:

£(0) — L(w) = dfig") w + % dzlf;’” ) o?

The gradient is usually estimated to zero.

49



Optimal Brain Surgeon (OBS)

e Propose ways to prune the weight, and finetune the remaining weights.

L(w") — L(w) ~ %(w —w) ' H(w—w') where H= V?(w)

e If we choose to prune gth weight, the problem we will try to solve is:

1
min —sTHs where s = w — w'

s 2
T _ _ e €qis the one-hot vector with gqth element equaling 1 and 0
s-1. Cy® = Wy otherwise.

e Solve this problem, we have:

,w2

* _wq -1 q
s*=——H "¢ Ly =
[H )4 ! ! 2(H 1) gq

50

How to update rest weights How to select the weight
NYU SAI LAB P J .

Hassibi, Babak, and David Stork. "Second order derivatives for network pruning: Optimal brain surgeon." Advances in

neural information processing systems 5 (1992).



Optimal Brain Quantization (OBQ)/GPTQ

omin-—
argming;,

WX, — WXy|2 st. C(We)>C.

e Each element of W is pruned one-by-one, until the target sparsity ratio

is achieved.
e The same idea can be applied to perform quantization, where each
value within W is rounded to its neared quantized value, and rest of the

weight will adjusted accordingly.

wy, = argmin,,

NYU SAI LAB

’11,‘2 w ( uant(’u‘ ) — w )2 Usy, = uant(«ll‘ )
r . 6=———F— H7}!, w,=argmin, 4 L L .. 2
Hpp 4 H ] P d i J Hpp

[Hpp

Frantar, Elias, and Dan Alistarh. "Optimal brain compression: A framework for accurate post-training quantization and
pruning." Advances in Neural Information Processing Systems 35 (2022): 4475-4488.

Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint
arXiv:2210.17323 (2022).

-H!
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CodeQuant

CodeQuant

. Framework
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layer (FFN)
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moothin 1 Implementation
] v p
urg min || X — Q(XR)|| ;
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X E>‘ m 1 (’II e | B
. 1 T :
y n % e ] |
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Pennutation-inv_ariant X < > e H | e
outlier grouping 23, [l cee H-
\ & ="

e Compared to quantization, the clustering operation exhibits greater

tolerance to outliers.

NYU SAI LAB
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LUT-based LLM Inference

Before K-Means

After K-Means

2 \

Input of 4 bits, weight with K

centroids.
Input Weight Results
centroid centroid
af w1 0011
a2 w1 0010
ak wk 1010

e The multiplication and addition operations can be performed using
lookup table (LUT).
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Advantage of Clustering

Clustering Quantization
Original 104 12 | 87 | 06 9.9 | 22 1.8 120 Original 104 12 | 87 | 06 | 99 | 22 | 1.8 | 120
Clustered 10.25 1.45/10.25/ 1.45 |10.25 1.45| 1.4510.25 Quantized | 12.0| 0.6 |12.0| 06 |12.0 06 | 0.6 | 12.0
& Error = 0.75 (Low) (9 Error = 1.3 (High)

e Clustering can be used to hand excessive outlier.
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Large Model Quantization

Large Model Pruning

Low-rank Decomposition for LLM
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Transformers as a Generative Al Tool

Decoder 12

Decoder 3

FEN

Decoder 2

SA

Decoder 1

ML
!

<BOS>
Round 1

—>

IIIIIII

¥
i

s
M

ML
Round 2

awesome T

f

<EOS>

f

(w]

(o]

!

!

> is
Round 3

e Each token is generated in an autoregressive manner.

> awesome
Round 4

NYU SAI LAB Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAl blog 1.8 (2019): 9. 56




Transformers as a Generative Al Tool

Reshape

~\

NYU SAI LAB

[ Softmax ]
Scale
[ KT ]
Qmm K [mm V |
[Reshape] [Res?ape] [Reshape]
| Ilnear ] [linear | | Ilnear )

S

FFN

(Normalization |

\

\

s

SAI

4[Normalization |

\

4

[ Linear& |
| Softmax |

A

Decoder

A

Decoder

A

Embedding |

N

A
INnput

e \We need to buffer the v and k for later usage.
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LLM: Prefilling

4 1 N\
7

Linear &
Softmax

_IZV cache

s | i

Decoder -~

Decoder

+ "
Embedding

_ K 9

1
“How are you”

Bl Key vector for ith token in jtn layer
(1xXE)

I \
ik k.2 ) A {) Bl Value vector for ith token in jtn layer

(1xE
)

e During the prefilling stage, LLM processes the entire prompt, or context tokens jointly, saving the
KV vectors into the memory.

NYU SAI LAB
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LLM: Decoding

4 T N 4 T \
[ Linear& | [ Linear &
| Softmax | | Softmax
kis ki A | (- | T
Decoder -~ . Decoder
; L]
Decoder KV cache Decoder
ke ko [ | |\ — —
KV cache | £pbedding [ Embedding |
. é J . ? AJ
“How are you" “How are you”
Round 1

e During the decoding stage, LLM generates the responses in an autoregressive way.

NYU SAI LAB
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LLM: Decoding

am doing well
A A A
4 : 1 \ (", : 1 ) well =TT ] (", : 1 \
Linear & doing (IR EEEE Linear & doing | i e N Linear &
am|mmmmm| | Softmax ) am ||| Softmax ) am ||| Softmax
| |- ———— A | |- ———— A | |- ———— A
e | ( e | ( mem | (
T T Decoder T T Decoder T T Decoder
| p— — | p— — | p—
KV cache Decoder KV cache Decoder KV cache Decoder
S, S S, S S, S
Embedding Embedding Embedding
L ) ") L ) ") L ) ")
“How are you |” “How are you | am” “How are you | am doing”
Round 2 Round 3 Round 4
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Streaming-LLM

(a) Dense Attention (b) Window Attention (¢) Sliding Window

w/ Re-compuitation (d) StreamingLLLLM (ours)
| |

£ |
S
Current Token Attention Sink
.. ek’ s m previous tokens m K “
...... are truncated .t L
<—— T cached tokens —» TL ev uled Lcached <L recomputed_ evicted L cached
tokens tokens tokens * tokens ” ¥ tokens

e \We observe an interesting phenomenon, namely attention sink, that keeping the KV of initial tokens
will largely recover the performance of window attention.

e There are strong attention scores towards initial tokens as a “sink” even if they are not semantically
important.

NYU SAI LAB Xiao, Guangxuan, et al. "Efficient streaming language models with attention sinks." arXiv preprint arXiv:2309.17453 (2023). 61




Pruning on Large Models: KV Cache Pruning

Accmulative Attention at Accmulative Attention at Accmulative Attention at

Layer 1 Layer 10 Layer 20
Layer 20 Head 0 Layer 20 Head 1 Layer 20 Head 2
Special Tokens Punctuation Locality Others
e We show the attention score of each token. Layersn Layer 60 Layer 70

e Different attention heads usually have different
importance scores on KV vectors.

e The importance of KV vectors also varies across ‘ ' ‘
layers.

NYU SAI LAB Ge, Suyu, et al. "Model tells you what to discard: Adaptive kv cache compression for lims." arXiv preprint arXiv:2310.01801
(2023).
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Drawbacks of Magnitude Pruning

e The major drawback of magnitude based pruning is that it does not
consider the impact of the input when making the pruning decision.

10{01]8 03] 4 | 2 |02| 3 [04]65| \agnitude [10]01]8 [03]4 |2 |02] 3 |04[65

x pruning x
013 [0.2] 1 |0.4]0.2] -1 30.40.6:>O3O 1100 |-1]13 ([0 |0

NYU SAI LAB




LLM Pruning: Wanda

Magnitude Pruning

S = [W|
4lo|1|-1| 4 FlEREDNI |+ FolFalG
wis|2|d|3|~-|3|2Fll 33 2Kl 3
3(1(0|2| |3 FNEl 2 | |-3 FeRkall 2

Weights Weight Importance
grouped per layer

Pruned Weights

Wanda

TToTiTa] 8= X
W |3|2|-1|3|{4]0/8]31 |4]0]1]0
3|1|0|23]4]8]9]l»0]0]|1]3
13]2]o0l6li |-3]/0|0]2
IXl2] 1] 2 ! 3 Weight Importance ~ Pruned Weights

Weights and activations

e Prune the weights by considering the input statistics.
e For each weight, if the corresponding input’s magnitude is large, the output will also be large.
e Need some samples for calibration.

grouped per output

NYU SAI LAB Sun, Mingjie, et al. "A simple and effective pruning approach for large language models." arXiv preprint arXiv:2306.11695

(2023).
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LLM Pruning: Wanda

LLaMA LLaMA-2
Method Weight Update  Sparsity 7B 13B 30B 65B 7B 13B 70B
Dense - 0% 5.68 509 477 356 512 457 312
Magnitude X 50% 17.29 2021 754 590 14.89 6.37 498
SparseGPT v 50% 7.22 6.21 531 457 651 563 398
Wanda X 50% 7.26 6.15 524 457 642 556 3.98
Magnitude X 4:8 16.84 13.84 7.62 636 1648 6.76 554
SparseGPT v 4:8 8.61 740 6.17 538 8.12 6.60 4.59
Wanda X 4:8 8.57 740 597 530 797 655 447
Magnitude X 2:4 42.13 1837 9.10 7.1 5459 833 6.33
SparseGPT v 2:4 11.00 9.11 7.16 6.28 10.17 832 5.40
Wanda X 2:4 11.53 958 690 6.25 11.02 827 5.16

Table 3: WikiText perplexity of pruned LLaMA and LLaMA-2 models. Wanda performs competi-
tively against prior best method SparseGPT, without introducing any weight update.
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Topics

Large Model Data Distribution
Large Model Quantization

Large Model Pruning

Low-rank Decomposition for LLM
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Low Rank Optimization for DNN Efficiency

e Weight tensors can be decomposed into:

n

W

NYU SAI LAB

r

r

W+

2 3

r

r

%I

n

W2

r<=min(m,n)

We can train the W1 and W2 in the DNN instead of W.

Less storage is required.
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Singular Value Decomposition

n r r
r n n
m W = mU|%x"R|=r V' | = mW%xr W:
e W:Input matrlx. Before: mn
o mxn matrix _ 3 .

e V (n%r matrix) contains the orthonormal After: mr + m= r(m+n) = min(m,n)(m+n)

eigenvectors of WTW assume W is full rank
e U (mur matrix) contains the orthonormal .

eigenvectors of WWT e \Without rank truncation, the
e R: Singular value matrix number of parameters increases.

o rar diagonal matrix, r is the rank of W

NYU SAI LAB @




Singular Value Decomposition

m n m r

S X M W S X X MW il % T W2

Computational cost=smn Computational cost = smr + snr
= s(m+n)r

= s(m+n)min(m,n)

e Without rank truncation, the computational cost will increase.

NYU SAI LAB o




Singular Value Decomposition

X1
2
— Wq T gJ
5 ———————4 AL 5““ -
Xif |a | Z & o SVD decomposition can
Wout = Wk e < X :
_D 3 _J |= R Wour [ - +x, Potentially save the MAC
3 L w 1Az operations, memory storage
\'% .
and KV cache size.
X1
2
%
X V4 Py
—I Wout l 1 3 = ]l v X2
e m Wout
3 X1+X2

NYU SAI LAB
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X | Xg| Wk E>L

NYU SAI LAB

EWV

Total MACs: 3LE?
Total weight parameters: 3E?
Total cache size: 2LE

Wk |= E|[wW§|Xr| Wk

Wy |= E|wW3|xr| wy

Total MACs: 6LrE
Total weight parameters: 6rE
Total cache size: 2rL

4l
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Wk |= E|[wW§|Xr| Wk

Wy |= E|wW3|xr| wy

Total MACs: 6LrE
Total weight parameters: 6rE
Total cache size: 2rL

E

r E

L| X [XE|wS[Xr| Wy

Total MACs: 6LrE
Total weight parameters: 6rE
Total cache size: 2rL
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/ kS b D w AW =W — W X AY (MSE=278.9)

47|53[19(32]|97 -0.3| 0.7 [-0.4] 0.0 [-0.2 101104 117.2)-2.8|25.5
34(13-09[122| 16 01|01 [-01]-0.0[-00| |22.9[-2.4|35:5 26|-05(38
110.0{-2.8[ 2.0 |-0.4]| 28| | SVD 01]03(09[01]-03[x |04|15[-05|= [-65]|05]96
. . 110.3)-4.0{ 3.7 [-1.0| 0.4 -0.3| 03 [-1.1]-0.0] 0.1 -0.0|-0.4|-0.3 -7.3|-2.6[10.9
e ASVD changes the objective
. ) : 22|33|11/-0841 0.7 [-1.7] 0.4 |-0.0| 0.6 10|05/ 0.2 30.4(58 [58.5
considering impact of
activation x X distribution AW =We=W A AY (MSE=9.9)
- 13|02 |-06[01]|-1.6 10[11]04 -6.7|-3.6| 5.1
L=|WX—-SVDW)X]|| aonl 02|00|-02|00|-03] |229-2.4[355 11(-0.7| 0.9
L 0= = = = -01[00|08]01]-07| % |04|15|05[= |-13|07]07
L= ”WX —SVD (WS)S X” —20+ -0.5/ 0.0 |-1.0(-0.0(-0.1 -0.0(-0.4]-0.3 1.7|-22] 15
-40
; : : e T T 1.7]-02| 06 |-02|23 100502 9145|638
S is a diagonal matrix 1 2 3 4 s

e To mitigate impact of channel wise
outlier within X, we scale the input
activation to mitigate the outliers.

NYU SAI LAB Yuan, Zhihang, et al. "ASVD: Activation-Aware Singular Value Decomposition for Compressing
Large Language Models." 2025.




QSVD

X1
( ) Py
— Wq % 1))
— m S,
2 —— =l u .
Wout XL {2 [Z AT | = SVD decomposition can
out 3 Wk = 3 Y, X2 .
o ) |m &— Wout +X potentially save the MAC
1 2 .
3 L w operations, memory storage
\% .
and KV cache size.
X1
P
w
— Z g S,
2 =% 3
l =X1 o)
Wout 3 —@ uk % % \Y; X2
e m Wout
3 X1+X2
u
NYU SAI LAB Haiyu Wang, Yutong Wang, Sai Qian Zhang, "QSVD: Efficient Low-rank 74
Approximation for Unified Query-Key-Value Weight Compression in Low-Precision

buffered Vision-Language Models", Neural Information Processing Systems (NeurlPS), 2025.



r E 3E
Wq [= E[wWg|Xr| Wy E[ Wg Wk Wy | Weoncat
r E [ r 3E
Wk |= E|WE |[Xr| Wk I::>zEWd Xr| ¥ |Xr w*
~ k k
r E r 3E
Wy |RE Ws Xr| Wy ~ EEEng )(r- Wk Wy

NYU SAI LAB

e Concatand SVD
[WQ? Wka WU] = Wconcat ~ Wd X3 X WY
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- = 3E
Wq [= E|WS|Xr| Wy E[ Wg Wk Wy
r E r 3E
Wk |= E[w|xr| Wi E>zEWd Xr|l ¥ [Xr w"
~ k k
r E r 3E
Wy |= E|[WS|Xr| Wy = E@a’m«- Wk Wy

NYU SAI LAB

Down/up projection

Weo = WS, (W2, Wi, Wy = 512w

[Wq) Wka Wv] — W:k:v X [W(;L, WI?’ Wu

v

]
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QSVD

E

r E

L| X [XE|wg[Xr|wWq

Total MACs: 6LrE
Total weight parameters: 6rE
Total cache size: 2rL

NYU SAI LAB

r 3E

Total MACs: 4LrE
Total weight parameters: 4rE
Total cache size: rL
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r E r

Wy |= E|[wd|Xr| W E@Skv

o

NYU SAI LAB

r E 3E
Wq | E Wg Xr Wg E| Wqg Wk Wy

r E r r 3E
Wk [=E[w|xr| Wk I:[>=Ewd><rz><lr W

3E
o[ wt W

Total MACs: 6LrE
Total weight parameters: 6rE
Total KV cache size: 2rL

Total MACs: 4LrE
Total weight parameters: 4rE
Total KV cache size: rL
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QSVD

Waq = E|W§|Xr| W

WV <E Wv Xr WS

NYU SAI LAB

r r
d| _—
E E[Wk| =L| ck
L] x | X r
3E d|
El Wa Wk Wy Bl Wy —L|Cv
r r 3E
= Elw![Xr| 5 |[xr w
r SE G
= EWgo|X r WG Wi W E r r
d
L X X EWakv| =L Cakv
e Shared latent

W’LL

v

]

79



QSVD

Wq | = E[W3[Xr| Wq

WV zE Wv Xr WS

NYU SAI LAB

r r
dl —
E E[Wk| =L]| Cxk
Ll x | X _r
d|l —
E| Wq \::\i Wy E WV - L CV
r : oE
= E[wixr| & |xr w
= EWXr wi o wd E r r
d
Ll X XE Wakv| = L Cakv

e Reconstruction

K = Cpo W, V = Cppe W
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QSVD

e How to assign the rank r to each Iayer’?
L(oc+ Ao) — L(o )
Ao

e The importance of each layer can be expressed as:

S En(I4-)

e Given a total rank budget R, we can allocate the rank for each layer in
proportion to the importance score.

:> ]ED(|—|)

NYU SAI LAB
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QSVD Performance

I Method

ScienceQA-IMG 1

| | Acc. Hwcost | Acc. Hwcost | Acc. Hwcost | Acc. Hw cost
5 ASVD 53.84% Ry 100% | 7.88% Ry :90.0% | 0.69% R, :80.0% | 0.10% Ry : 70.0%
= SVDLLM 65.89% Ry :50.0% | 3461% R, :425% | 9.07% Ry :35.0% | 3.02% Ry : 27.5%
> @ Ry :100% R, 90.0% Ry :80.0% Ry :70.0%
g | QSVD-noQ | 83.78% Ry 37.5% 81.70% Ry 33.75% 79.57% Ry :30.0% 77.64% Ry :26.25%
2 FP16 Accuracy: 84.53%
= ASVD 5072% Ry :63.3% | 47.15% R, : 60.0% | 4026% R, :56.7% | 25.73% R;:53.3%
2 SVDLLM 65.94% R, :225% | 66.14% 1;{2 1 20.0% | 64.90% IR{-, - 17.5% | 62.87% l;;z 1 15.0%
Dy Ry :60.0% 1 :53.3% 1 :46.7% ' :40.0%
§ = [Q5VDmeQ | @N% p nsg | BR2% poeex | TRV* poarsx | SB% p,oases
— FP16 Accuracy: 6951%
v ASVD 64.70% R, :63.3% | 56.92% R, :60.0% | 46.50% R, :56.7% | 42.79% R, :53.3%
. SVDLLM 71.44% R, 620205%) 71.44% Il? 5251;);{;; 71.29% I]f;z : 4167;?9% 70.50% 1{? 4105‘;)%)
. 2 1y 60 e 1 :46. 40!
P 1 1 1 1
E < | QSVD-noQ | 71.79% Ry :22.5% 71.74% Ry 20.0% 71.74% Ry :17.5% 70.80% R :15.0%
— FP16 Accuracy: 71.78%

QSVD achieves a comparable and even an better performance

than the original model.

NYU SAI LAB
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Problem of SVD

e The problem we have to solve can be formulated as this:
argmin||W — W'||?
WI
W' = DU

D € R
U c R’I'XE

e However, we know that each element of W has different impact on the
final accuracy.

NYU SAI LAB
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Weighted SVD

e The problem we have to solve can be formulated as this:

argmznZHaU ij — Qij z,j||
w5

W' = DU
D € REX'P
Fe RTXE

e This problem has no closed-form solution, therefore we can use the deep-learning
method to solve this, train D and U such that the objective function is minimized.
e For importance score, we can use the following formula to evaluate.

NYU SAI LAB

L(w) — L(w") ~ Zf}

Haiyu Wang, Yutong Wang, Sai Qian Zhang, "WSVD: Weighted Low-Rank Approximation for Fast and Efficient Execution of
Low-Precision Vision-Language Models", in submission.
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