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Efficiency Strategies for Large 

Language Models
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Notes
● Lab 2 is due next Friday.
● Think about the project, discuss with me during office hours or after class.
● No quiz today.
● Midterm

○ Oct 29, in class.
○ Will cover materials up to lecture 8 (Oct 22)
○ Will send out a coverage by this weekend

● Final presentation
○ Virtual 
○ Dec 16 and Dec 17
○ Final report due at Dec 19
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Recap
● Distillation
● Neural architecture search (NAS)
● Low-rank factorization
● Dynamic / Conditional Computing
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Topics
● Large Model Data Distribution
● Large Model Quantization
● Large Model Pruning
● Low-rank Decomposition for LLM
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Quantization
● Quantization on activation needs to be performed dynamically. This will introduce 

additional compute overhead.
● Also the activation will pass the nonlinear functions, which are usually very sensitive to 

quantization error, so dequantization is required to convert back to FP 16/32.
● For large models with substantial computational demand, even when input activations 

are dynamically quantized, this approach can still significantly reduce overall 
processing latency.
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Quantization
● Quantization on activation needs to be performed dynamically. This will introduce 

additional compute overhead.
● Also the activation will pass the nonlinear functions, which are usually very sensitive to 

quantization error, so dequantization is required to convert back to FP 16/32.
● For large models with substantial computational demand, even when input activations 

are dynamically quantized, this approach can still significantly reduce overall 
processing latency.
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Granularity of Quantization
● The activation and weight can be quantized with different granularity:

○ Tensor-based quantization
○ Vector-based quantization
○ Group-based quantization

● A higher quantization granularity will lead to a lower quantization error and a 
higher hardware implementation cost.

Tensor-based 
quantization

Vector-based
quantization

Group-based
quantization

X X X
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Types of Outlier
● Massive Activation:

○ For an activation matrix A, an massive activation is an element Aij within it 
that satisfies:

○ Aij > η✕mean(|A|)
○ Aij > γ
○ For example, η=300, γ=50

● Channelwise Outlier:
○ mean(Ai) > η✕std(A) +mean(|A|)
○ std(Ai) < β
○ For example, η=3, β=0.6
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CLIP Model

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." International conference 
on machine learning. PmLR, 2021.
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Outlier Study: CLIP Activations
● Outliers with large magnitudes 

appear at positions x1, y1, and 
y5, referred to as massive 
activations.

X1   X2   X3   X4   

X5   X8   X9   y1   

y2   y3   y4   y5   
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Outlier Study: CLIP Activations
● 3D plots of x2 across 

layers.

● x2 exhibits channel wise 
outlier

Layer 1   Layer 2   Layer 3   Layer 4   

Layer 11   Layer 12   Layer 13   Layer 14   

Layer 19   Layer 20   Layer 21  Layer 23  
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Outlier Study: CLIP Weights

● Wq across CLIP layers.
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Outlier Study: CLIP Weights

● Wk across CLIP layers.



15

Outlier Study: CLIP Weights

● Wv across CLIP layers.
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Outlier Study: CLIP Weights



17

Outlier Study: LLaMA Activations

Sun, Mingjie, et al. "Massive activations in large language models." arXiv preprint arXiv:2402.17762 (2024).

x1

x2
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Why Massive Activations Exist?
● These massive activations are not random spikes or errors, but rather learned, input-agnostic 

constants that function as implicit bias terms within the model.
● The paper argues that LLMs use massive activations to inject bias into the self-attention 

computation. These large, fixed activations essentially allow certain tokens to always attract 
disproportionately high attention.

● No clear conclusion has been reached.

Sun, Mingjie, et al. "Massive activations in large language models." arXiv preprint arXiv:2402.17762 (2024).



19

Impact of Massive Activation

Raman, Rahul, Khushi Sharma, and Sai Qian Zhang. "Rethinking the Outlier Distribution in Large Language Models: An 
In-depth Study." arXiv preprint arXiv:2505.21670 (2025).

● The truncation of massive activation will cause the significant accuracy degradation 
of the LLM.

● Massive activations also occur in other types of foundation models that utilize 
attention-based architectures.
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Detailed Study of Massive Activation
● y7 of layer 3 first produce massive activation (MA), the outlier exists within the first text token.
● x1 and y1 in the following layers contain MA, which may reach into the thousands.
● The MA then propagates through residual link across layers.
● Channel wise outliers exists within x2, y2.
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Detailed Study of Massive Activation

● Top magnitude of x1 across layers.
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Detailed Study of Massive Activation

● Top magnitude of y7 across layers.

● Truncating the massive activation that caused by residual connection will not 
lead to large accuracy drop.
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Detailed Study of Massive Activation
● Distribution of activation within layer 3.
● MA first appears in y6 of token=0.

X1   X2   X8   X9   

y1   y2   y3   y4   

y5   y6   y7   
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How Channelwise Outlier Forms?
● X1 already has some channelwise outlier, but not significant enough.
● Partial channelwise outlier forms after standardization.
● The scaling process greatly contributes to part of the channelwise outliers.
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How Channelwise Outlier Forms?

L
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x x’

Standardization

● When the standard deviation is low, channel-wise outliers become more pronounced.
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How Channelwise Outlier Forms?

● X1 typically already contains some channelwise outliers. 
● Following standardization, the outlier's magnitude 

becomes more pronounced.
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How Channelwise Outlier Forms?

● The scaling and bias factors within the normalization layer also contribute to the 
channelwise outlier.

Profiling on CLIP
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How Channelwise Outlier Forms?

● The scaling and bias factors within the 
normalization layer also contribute to the 
channelwise outlier.
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● The question then arises: why does x1 already exhibit some channelwise 
outliers?

● This is attributed to Wout, which results in y5 having some minor channelwise 
outliers.

● Additionally, the residual link carries intermediate activations with channelwise 
outliers, which are also generated by the Wout from preceding layers.

How Channelwise Outlier Forms?
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Quantization Strategy for LMs

LLM
Intermediate

LLM

Post-training 
Quantization

Outlier
Smoothing

Output
LLM

21

● When performing post-training quantization on a LLM, it's common to include a 
step of outlier smoothing prior to the quantization process. 
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Topics
● Large Model Data Distribution
● Large Model Quantization
● Large Model Pruning
● Low-rank Decomposition for LLM
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Topics
● Large Model Data Distribution
● Large Model Quantization

○ Smoothing Techniques
○ Quantization Techniques

● Large Model Pruning
● Low-rank Decomposition for LLM
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SmoothQuant

Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." 
International Conference on Machine Learning. PMLR, 2023.

x W✕ x’ W’✕

Y = Q(X)Q(W)
Large quantization error

Y = Q(X’)Q(W’)
Low quantization error

ith column

ith row
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SmoothQuant

Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." 
International Conference on Machine Learning. PMLR, 2023.

● The intermediate results within LLM usually 
have a lot of outliers.

● SmoothQuant smooths the activation outliers 
by offline migrating the quantization difficulty 
from activations to weights with a 
mathematically equivalent transformation.
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SmoothQuant

Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." 
International Conference on Machine Learning. PMLR, 2023.

● α is determined from the calibration 
dataset.

● α is a hyperparameter.
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Activation-Aware Weight Quantization (AWQ)

Lin, Ji, et al. "AWQ: Activation-aware Weight Quantization for On-Device LLM Compression and Acceleration." Proceedings 
of Machine Learning and Systems 6 (2024): 87-100.

● AWQ improves the performance of 
smoothquant by making “s” learnable.
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QuaRot

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).

● QuaRot introduces a novel methods to convert the weights and activation of LLM.
● After conversion, most of the outliers within the activation and weights are removed.
● This conversion introduces almost no additional cost during the inference.
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QuaRot
● Assume Y = AW, where A may have outliers, quantizing A and W as Q(A) and 

Q(W) could result in increased quantization error. Consequently, Q(A)Q(W) may 
differ significantly from AW.

● With QuaRot, a orthogonal matrix is applied to eliminate the outliers within A.

WA AW RTW AW

● RTW can be computed offline, AR can be generated by modifying the weight 
matrices of the last layer.

AR

Q(A) Q(A)Q(W) Q(AR)Q(W) Q(RTW) Q(AR)Q(RTW)

RTR=RRT=I

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).
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QuaRot

● RTW can be computed offline, AR can be generated by modifying the weight 
matrices of the last layer.

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).

Al+1Wl+1Al+1RWlR RTWl+1

Layer l Layer l+1

Al+1Wl+1Al+1Wl Wl+1

Layer l Layer l+1

Al Al
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QuaRot

● However, if a nonlinear function follows the linear layers, the Hadamard transform 
must be computed dynamically.

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).

Wl

Layer l

LayerN
orm

Al LN(AlWl) WlR
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Al LN(AlWlR) ≠ LN(AlWl)×R
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QuaRot

● For some of the layers, the conversion needs to be performed online.
● We can use Hadamard matrix, which consists of only 1 and -1 to facilitate the 

matrix multiplications.

Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." arXiv preprint arXiv:2404.00456 (2024).
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DuQuant

Lin, Haokun, et al. "Duquant: Distributing outliers via dual transformation makes stronger quantized llms." Advances in 
Neural Information Processing Systems 37 (2024): 87766-87800.

WA AW PTW AWAP
PTP=PPT=I

● Permutation matrix is another types of matrix which cause no change on the output.
● Duquant combines three types of computational invariance operation, including the 

scalar-based, rotation-based and permutation-based operations for mitigating the outliers.
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DuQuant

Lin, Haokun, et al. "Duquant: Distributing outliers via dual transformation makes stronger quantized llms." Advances in 
Neural Information Processing Systems 37 (2024): 87766-87800.

A
Quantization group
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SpinQuant

Liu, Zechun, et al. "SpinQuant--LLM quantization with learned rotations." arXiv preprint arXiv:2405.16406 (2024).

● SpinQuant optimizes (or learns) the rotation matrices to 
obtain the minimal changes on the training loss.

● We have to ensure the rotational matrix still satisfies the 
orthogonal property → Cayley Optimization.
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Topics
● Large Model Data Distribution
● Large Model Quantization

○ Smoothing Techniques
○ Quantization Techniques

● Large Model Pruning
● Low-rank Decomposition for LLM



46

Sequential Update

Layer 1 Layer 2 Layer 3xc,1
yc,1 yc,2 yc,3

● We use a calibration dataset and 
profile some data xc, yc on the 
first layer.

● After that, we use these data to 
train the optimal quantization 
hyperparameters, smoothing 
hyperparameters.
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Calibration Dataset

Layer 1 Layer 2 Layer 3
yc,1 yc,2 yc,3 ● After that, we regenerate the 

calibration dataset using the 
new weight values in layer 1, 
results in (xc,2, yc,2).

xc,1



48

AdaQuant

Hubara, Itay, et al. "Accurate post training quantization with small calibration sets." International Conference on Machine 
Learning. PMLR, 2021.

AdaQuant Sequential AdaQuant

● A small calibration dataset is used to find the optimal scale and V.
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Pruning Criteria: Training Loss Change

● When reflecting on each individual value, 
the pruning criteria becomes:

LeCun, Yann, John Denker, and Sara Solla. "Optimal brain damage." Advances in neural information processing systems 
2 (1989).

The gradient is usually estimated to zero.
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Optimal Brain Surgeon (OBS)
● Propose ways to prune the weight, and finetune the remaining weights.

● If we choose to prune qth weight, the problem we will try to solve is:

● Solve this problem, we have:

How to select the weightHow to update rest weights
Hassibi, Babak, and David Stork. "Second order derivatives for network pruning: Optimal brain surgeon." Advances in 
neural information processing systems 5 (1992).

● eq  is the one-hot vector with qth element equaling 1 and 0 
otherwise.
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Optimal Brain Quantization (OBQ)/GPTQ

● Each element of W is pruned one-by-one, until the target sparsity ratio 
is achieved.

● The same idea can be applied to perform quantization, where each 
value within W is rounded to its neared quantized value, and rest of the 
weight will adjusted accordingly.

Frantar, Elias, and Dan Alistarh. "Optimal brain compression: A framework for accurate post-training quantization and 
pruning." Advances in Neural Information Processing Systems 35 (2022): 4475-4488.
Frantar, Elias, et al. "Gptq: Accurate post-training quantization for generative pre-trained transformers." arXiv preprint 
arXiv:2210.17323 (2022).



52

CodeQuant

● Compared to quantization, the clustering operation exhibits greater 
tolerance to outliers.
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LUT-based LLM Inference
● Input of 4 bits, weight with K 

centroids.

Input
centroid

Weight
centroid

Results

a1 w1 0011

a2 w1 0010

… … …

ak wk 1010

● The multiplication and addition operations can be performed using 
lookup table (LUT).
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Advantage of Clustering

10.4 1.2 8.7 0.6 9.9 2.2 1.8 12.0

Clustering

Original

10.25 1.45 10.25 1.45 10.25 1.45 1.45 10.25Clustered

10.4 1.2 8.7 0.6 9.9 2.2 1.8 12.0Original

12.0 0.6 12.0 0.6 12.0 0.6 0.6 12.0Quantized

Error = 1.3 (High)Error = 0.75 (Low)

Quantization

● Clustering can be used to hand excessive outlier.
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Topics
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● Large Model Pruning
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Decoder 12

Decoder 1

Decoder 2

Decoder 3

…

FFN

SA

LLM

ML

LLM LLM

is

LLM

awesome <EOS>

awesomeML is<BOS>
Round 1 Round 2 Round 3 Round 4

● Each token is generated in an autoregressive manner.

Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI blog 1.8 (2019): 9.

Transformers as a Generative AI Tool
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FFN

Decoder

Decoder

Linear &
Softmax

Embedding

Normalization

Normalization

SA

Input
linear linear linear

Reshape Reshape Reshape

Q K V
QKT

x
Reshape

linear

Softmax

Scale

● We need to buffer the v and k for later usage.

Transformers as a Generative AI Tool
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LLM: Prefilling

Decoder

Decoder

Linear &
Softmax

Embedding

“How are you”
● During the prefilling stage, LLM processes the entire prompt, or context tokens jointly, saving the 

KV vectors into the memory.

ki,j Key vector for ith token in jth layer

vi,j Value vector for ith token in jth layer

(1✕E)

(1✕E
)

k1,1 k1,2

k2,1 k1,2

k3,1 k3,2

v1,1 v1,2

v2,1 v1,2

v3,1 v3,2

KV cache
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LLM: Decoding

Decoder

Decoder

Linear &
Softmax

Embedding

“How are you”

KV cache

● During the decoding stage, LLM generates the responses in an autoregressive way.

k1,1 k1,2

k2,1 k1,2

k3,1 k3,2

v1,1 v1,2

v2,1 v1,2

v3,1 v3,2
Decoder

Decoder

Linear &
Softmax

Embedding

I

Round 1

KV cache

I

“How are you”
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LLM: Decoding

Decoder
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Streaming-LLM

Xiao, Guangxuan, et al. "Efficient streaming language models with attention sinks." arXiv preprint arXiv:2309.17453 (2023).

● We observe an interesting phenomenon, namely attention sink, that keeping the KV of initial tokens 
will largely recover the performance of window attention.

● There are strong attention scores towards initial tokens as a “sink” even if they are not semantically 
important. 
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Pruning on Large Models: KV Cache Pruning

Ge, Suyu, et al. "Model tells you what to discard: Adaptive kv cache compression for llms." arXiv preprint arXiv:2310.01801 
(2023).

● We show the attention score of each token.
● Different attention heads usually have different 

importance scores on KV vectors.
● The importance of KV vectors also varies across 

layers.
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Drawbacks of Magnitude Pruning

0.1 3  1 3-10.4 0.2 0.4 0.60.2 0 3  1 3-10 0 0 00

Magnitude 
pruning

● The major drawback of magnitude based pruning is that it does not 
consider the impact of the input when making the pruning decision.

10 0.1  0.3 30.2 4  2 0.4 6.58
✖

10 0.1  0.3 30.2 4  2 0.4 6.58
✖
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LLM Pruning: Wanda

Sun, Mingjie, et al. "A simple and effective pruning approach for large language models." arXiv preprint arXiv:2306.11695 
(2023).

● Prune the weights by considering the input statistics.
● For each weight, if the corresponding input’s magnitude is large, the output will also be large.
● Need some samples for calibration.
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LLM Pruning: Wanda
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Topics
● Large Model Data Distribution
● Large Model Quantization
● Large Model Pruning
● Low-rank Decomposition for LLM
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Low Rank Optimization for DNN Efficiency
● Weight tensors can be decomposed into: 

n

m W = m

r

r
r n

r✖

= m

r
n

r

● We can train the W1 and W2 in the DNN instead of W.
● Less storage is required.

r<=min(m,n)✖

✖W1 W2
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Singular Value Decomposition
n

m W = m

r

r
r n

r

● W: Input matrix 
○ m✖n matrix

● V (n✖r matrix) contains the orthonormal 
eigenvectors of WTW

● U (m✖r matrix) contains the orthonormal 
eigenvectors of WWT

● R: Singular value matrix
○ r✖r diagonal matrix, r is the rank of W

U VTR

Before: mn
After: mr + rn = r(m+n) = min(m,n)(m+n)
assume W is full rank

✖ ✖ = m
n

r✖W1 W2

r

● Without rank truncation, the 
number of parameters increases.
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Singular Value Decomposition
n

m W =

Computational cost=smn

m
n

r✖W1 W2

rm

s X ✖

m

s X ✖

Computational cost = smr + snr 
 = s(m+n)r

= s(m+n)min(m,n)

● Without rank truncation, the computational cost will increase.
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Singular Value Decomposition
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QSVD
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QSVD
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ASVD

 

 

● ASVD changes the objective 
considering impact of 
activation x

Yuan, Zhihang, et al. "ASVD: Activation-Aware Singular Value Decomposition for Compressing 
Large Language Models." 2025.

● To mitigate impact of channel wise 
outlier within X, we scale the input 
activation to mitigate the outliers.

S is a diagonal matrix
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QSVD
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Haiyu Wang, Yutong Wang, Sai Qian Zhang, "QSVD: Efficient Low-rank 
Approximation for Unified Query-Key-Value Weight Compression in Low-Precision 
Vision-Language Models", Neural Information Processing Systems (NeurIPS), 2025.
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QSVD

● Concat and SVD
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QSVD

● Down/up projection

● Share latent
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QSVD
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QSVD
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QSVD

● Shared latent
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QSVD

● Reconstruction
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QSVD
● How to assign the rank r to each layer?

● The importance of each layer can be expressed as:

● Given a total rank budget R, we can allocate the rank for each layer in 
proportion to the importance score.
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QSVD Performance

● QSVD achieves a comparable and even an better performance 
than the original model.
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Problem of SVD 
● The problem we have to solve can be formulated as this:

● However, we know that each element of W has different impact on the 
final accuracy.
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Weighted SVD
● The problem we have to solve can be formulated as this:

● This problem has no closed-form solution, therefore we can use the deep-learning 
method to solve this, train D and U such that the objective function is minimized.

● For importance score, we can use the following formula to evaluate.

Haiyu Wang, Yutong Wang, Sai Qian Zhang, "WSVD: Weighted Low-Rank Approximation for Fast and Efficient Execution of 
Low-Precision Vision-Language Models", in submission.


